
7 July 2017© COPYRIGHT MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Getting the Most
from MarkLogic Semantics
John Snelson, Principal Engineer, MarkLogic
Stephen Buxton, Sr. Director, Product Management, MarkLogic

Introduction

SLIDE: 3 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Semantics Is: A New Way to Organize Data

Data is stored in triples, expressed as :Subject : Predicate : Object
John Smith : livesIn : London

London : isIn : England

Query with SPARQL, gives us simple lookup .. and more!

Find people who live in (a place that's in) England

RDF
triples

John livesIn IsIn EnglandLondon

SLIDE: 4 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triples Alongside Documents

User1

rank

Senior
Manager

Geneva

basedIn

Compliance
Officer

role

High risk personApp1

runsOn

Cluster1
TopSecret

requires

Database1

accesses

runs

SLIDE: 5 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Documents as Part of the Graph

User1

rank

Senior
Manager

Geneva

basedIn

Compliance
Officer

role

Hig
h
risk
pers
on

App1

runsOn

Cluster1
TopSecret

requires

Database1

accesses

runs

deep dive

license

user guide
tutorialMovie

order

SLIDE: 6 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triples About Documents – Extended Metadata

User1

rank

Senior
Manager

Geneva

basedIn

Compliance
Officer

role

Hig
h
risk
pers
on

App1

runsOn

Cluster1
TopSecret

requires

Database1

accesses

runs
order

format

JSON

English

Delaware

2016-12-31

jurisdiction

expires

Ts and Cs

language

SLIDE: 7 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triples About Documents - Integration

App1
order

XML

format

License

Vendor

<VENDOR>

Seller

<seller>

Provider

<prov>

Computer

Asset

equivalent equivalent

SLIDE: 8 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<order id="12345">
<VENDOR>Acme Corp</VENDOR>
<payment>
<amount>3427</amount>
<unit>USD</units>
<period>annual</period>

</payment>
<sem:triple>

<sem:subject>http://youruri.com/orders/12345</sem:subject>
<sem:predicate>http://youruri.com/predicates/expires</sem:predicate>
<sem:object>2016-12-31</sem:object>

</sem:triple>
<sem:triple>

<sem:subject>http://youruri.com/orders/12345</sem:subject>
<sem:predicate>http://youruri.com/predicates/TsAndCs</sem:predicate>
<sem:object>http://youruri.com/terms/34567</sem:object>

</sem:triple>
<description> </description>
</order>

XML [JSON] Document With Embedded Triples

SLIDE: 9 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<userInfo>
<source>myApp44</source>
<confidence>100</confidence>
<location>37.52 -122.25</location>
<icd9-proc-code>1111</icd9-proc-code>
<temporal>
<systemStart/><systemEnd/>
<validStart>2014-04-03T11:00:00</validStart>
<validEnd>2014-04-03T16:00:00</validEnd>

</temporal>
...
<sem:triple>
<sem:subject>http://youruri.com/users/11111</sem:subject>
<sem:predicate>http://youruri.com/predicates/runs</sem:predicate>
<sem:object>http://youruri.com/applications/1111</sem:object>

</sem:triple>
<sem:triple>
<sem:subject>http://youruri.com/users/11111</sem:subject>
<sem:predicate>http://youruri.com/predicates/manages</sem:predicate>
<sem:object>http://youruri.com/applications/3333</sem:object>

</sem:triple>
</userInfo>

Set of Triples with XML [JSON] annotation

Semantics Performance at Scale

Balvinder Dang
Ed Thomas
James Kerr

Tom Ternquist

CREDITS

SLIDE: 11 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Semantics Performance at Scale
 Note: not all Semantics use cases are “at scale”

 Some uses require only a small number of triples with simple queries:

- Semantic Search – expand search terms, concept search

- Semantic Integration – expand location of search via a Semantic Model

 Here, we can be more generous with joins, inference, and so on

SLIDE: 12 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tip: Use MarkLogic!
 Use MarkLogic capabilities:

- Security

- Partition: e.g. Collections

- Search

- Filtering

- Projection

 DON’T: pull all possibly-relevant data into the mid-tier

 DO: use the power of MarkLogic

- distributed operations / Map-Reduce

- close to the data

SLIDE: 13 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tip: Scope the query
 Trim results sets early

 Compare with SELECT * FROM [table]

 It’s worse than that with a triple store or document store

- SELECT * FROM [the whole database]

 See “Use MarkLogic”: partitioning

 Advanced: get smart about keeping like-triples in the same document

SLIDE: 14 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tip: Documents for Entities; Triples for Facts, Relationships
 It’s better that way!

 It’s more efficient

- Keep entity information together

- Reduce joins on query AND retrieval

 … some clever tricks if you know where/how triples are stored

SLIDE: 15 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tip: Documents for Entities; Triples for Facts, Relationships

S. Shady

D12
is member of claims credit for

rented in the vicinity of
Blue Van

Noise Comp.

Suspicious
Activity

Event

subclass
of

SLIDE: 16 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tip: Documents for Entities; Triples for Facts, Relationships

Person

Organization

Event

Asset

is member of
claims

credit for

owns seen around

suspected in

material support

SLIDE: 17 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tip: Inference
Inference is powerful and convenient, but can be expensive

 Scope the query

 Consider SPARQL-based inference

© COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED. SLIDE: 18

//With SPARQL Based Inference
sem.sparql("
SELECT ?uri {
?s rdf:type/rdfs:subClassOf* fs:Trade.
?s rdfs:isDefinedBy ?uri

} LIMIT 10");

 Inference ruleset:

- Automatically expands rdf:type

SPARQL Based Inference
//With Inference ruleset
sem.sparql("
SELECT ?uri {
?s rdf:type fs:Trade .
?s rdfs:isDefinedBy ?uri

} LIMIT 10",
[],[],
sem.rulesetStore(
"subClassOf.rules",sem.store())

)

 SPARQL Based Inference:

- Use a property path query

SLIDE: 19 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tip: Inference
Inference is powerful and convenient, but can be expensive

 Scope the query

 Consider SPARQL-based inference

 Consider materialization (SPARQL CONSTRUCT)

SLIDE: 20 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tips: detailed [1]
 Use MarkLogic indexes to scope a query

- Collection query (or SPARQL FROM) to partition the RDF space

- Put ontologies and other lookup/mapping triples into their own graphs/collections

- Consider pushing-down some SPARQL FILTERs to the document

 Look for joins that can be eliminated by materializing those relationships at load/update time

- Think of this as denormalizing triples

- “joins are free … conceptually”

 “Materialize” often-queried elements (in documents) consistently for better indexing

SLIDE: 21 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tips: detailed [2]
 Project the result:

- From SPARQL for small results sets:

- Get the set of documents that match your query using search

- Return the relevant triples directly from the index

- From documents for large results sets:

- “get me customers/orders/contracts that …”

- Fetch document in a single read, no joins

SLIDE: 22 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Tips: detailed [3]
 Use the latest version of MarkLogic: perf improvements on minor releases

 Add more memory: allows the optimizer to choose faster plans

 Add more hardware: cluster for parallelization

 Re-use queries: query plan is cached for 5 minutes; use bind variables

 Use MarkLogic built-in functions in SPARQL

 Consider dedup-off option to sem:sparql() [ML9]

- Avoid dedup processing

- No effect on results if you have no duplicate triples and/or you use DISTINCT

- Can make a big difference

SLIDE: 23 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Case Studies
 Company names have been obscured, but these are real projects

 Query timings are given for comparison only

Case Study:
Educational Publisher

SLIDE: 25 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Case Study: Educational Publisher
Central metadata repository to store metadata, product mapping and central rights management
using all-RDF

 Semantic enrichment of content: provide bespoke products using intelligent/smart search.

 Easy discovery and re-use of content
 Central rights management
 Use (and extend) standard RDF vocabularies to share metadata, e.g. Dublin Core.
 RDF Multilingual support

 Before: some SPARQL queries were very slow

 Resolution: 4-week exercise to identify and improve slowest queries

 After: performance improvements of up to 100x

SLIDE: 26 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query: find triples where object matches mat?s
Dataset: 6 Million triples

Query: find triples where object matches mat?s

 Regex term filter

 Language filter

 Searchable filter

 UNION Blank Nodes

 Authorization filter based on SHACL

SLIDE: 27 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SELECT DISTINCT ?id
WHERE
{

?id a ?__type.
{{{

?id ?_propVar1 ?_o2.
FILTER regex (?_o2, ”mat?s"^^<http://www.w3.org/2001/XMLSchema#string>, "i")
FILTER (langmatches(lang(?_o2), "en") || lang(?_o2) = "")
FILTER NOT EXISTS { graph <nonsearchable> {?id ?_propVar1 ?obj } } }

} UNION {
?id ?bnodeProp _:b0 .
_:b0 ?_propVar1 ?_o2.
FILTER regex (?_o2, ”mat?s"^^<http://www.w3.org/2001/XMLSchema#string>, "i")
FILTER (langmatches(lang(?_o2), "en") || lang(?_o2) = "")
FILTER NOT EXISTS { graph <nonsearchable> {_:b0 ?_propVar1 ?obj } }}

}
OPTIONAL { ?id raf:retrievableBy ?__irole}
FILTER(!BOUND(?__irole) || ?__irole IN ("metadataReader"))
OPTIONAL {

SELECT ?__badShape ?__type {
?__badShape sh:scopeClass ?__type.
MINUS {

?__badShape sh:scopeClass ?__type.
?__badShape raf:retrievableBy ?userRole
VALUES ?userRole {"metadataReader"}

}
MINUS {

?__badShape sh:scopeClass ?__type.
?__badShape raf:sorRole ?sorRole

}}
} FILTER (!BOUND(?__badShape))
}
LIMIT 20

Regex Term Filter

Language Filter

Searchable Filter

Union BNodes

Authorization Filter

SLIDE: 28 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query: find triples where object matches mat?s
Dataset: 6 Million triples

Query: find triples where object matches mat?s

Timings:

 Initial: 20 secs

 Use cts:contains instead of regex() in SPARQL: 7 secs

 Use collection query to partition by collections/graphs: 3 secs

 Use a cts:query to partition data further: 0.4 secs

 Overall improvement: 100x

SLIDE: 29 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query: find triples where object matches mat?s
Dataset: 6 Million triples

Query: find triples where object matches mat?s

Next steps:

 Replace UNION Blank Nodes with property path
(new in MarkLogic 8)

 Look at using MarkLogic security (index-based)

- Replace SHACL constraints in each query

- Remove FILTER NOT EXISTS { graph <nonsearchable> …

SLIDE: 30 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query: GET Description
Dataset: 6 Million triples

Query: Fetch everything you know about X

Timings:

 Initial: 6 secs

 Use named graph/collection and collection-lexicon

 Use cts:triple-range-query to scope by subjects

 Final: 0.2 secs

 Overall improvement: 30x

Next step:

 Consider documents for “everything you know about X”

 Use TDE to index (parts of) documents as triples [ML9]

SLIDE: 31 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Performance Exercise

Case Study:
Data Store for Clinical Data

SLIDE: 33 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Case Study: Data Store for Clinical Data
Data store for clinical data - Organizations, patients, encounters, conditions, medications, etc.

 Data comes in in the form of FHIR messages

 Need to track provenance of every data element in the system

 Enrich clinical data

 Need to be able to query based on one or more ontologies

- Connect concepts, traverse relationships, etc.

 Role-based access to PHI

 Encrypt and audit access of PHI

 Archive older, less used data

SLIDE: 34 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Initial Approach
 All data represented as triples

- Limited access to document features: security, tiered storage, bitemporal

 Provenance and other metadata about triples via “instantiated predicates”

- One way to do “reification” in a pure-triples world

- Every query requires inference OR re-write

SLIDE: 35 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Initial Approach
 All data represented as triples

 Provenance and other metadata about triples via “instantiated predicates”

Issues:

 Inferencing required for every query against the ADR

 Limited use of MarkLogic’s powerful multi-model query and analytic capabilities

 Limited use of MarkLogic’s data management capabilities

- Security, Tiered Storage, Bitemporal

 Many joins to retrieve back a single resource/record (e.g. Patient)

 Complex ETL from entities to triples

<Sidetrack: Metadata about triples>

SLIDE: 37 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Metadata about a triple[1]: Reification
 Triple:

:John :livesIn :London

 Reified triple:
:triple1234 rdf:type rdf:Statement .
:triple1234 rdf:subject :John
:triple1234 rdf:predicate :livesIn
:triple1234 rdf:object :London

 Now you can say things about this triple:
:triple1234 :source :patient-record-42

 Downside:

- 4x triples

- more complex queries OR inference

SLIDE: 38 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Metadata about a triple[2]: Instantiated Predicates
 Triple:

:John :livesIn :London

 Instantiated Predicate:
:JohnLivesIn rdfs:type :livesIn
:John :JohnLivesIn :London

 Now you can say things about this triple:
:JohnLivesIn :source :patient-record-42

- (need at least 1 more triple to constrain :JohnLivesIn to :John)

 Downside:

- At least 3x triples

- More complex queries OR inference

- Inference: infer around 100,000 new triples for each query

SLIDE: 39 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Metadata about a triple[3]: Embed triple in a document
 Triple:

:John :livesIn :London

 Now you can say things about this triple:
<doc>

<triple>
<subject>John</subject>
<predicate>livesIn</predicate>
<object>London</object>

</triple>
<source>patient-record-42</source>

</doc> Any metadata: source, confidence, bitemporal, etc
Metadata can be structured
Query with combination query or Optic

 Embedded triple:
<doc>
<triple>

<subject>John</subject>
<predicate>livesIn</predicate>
<object>London</object>

</triple>
</doc>

</Sidetrack: Metadata about triples>

SLIDE: 41 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Initial Approach
 All data represented as triples

 Provenance and other metadata about triples via “instantiated predicates”

Issues:

 Inferencing required for every query against the ADR

 Limited use of MarkLogic’s powerful multi-model query and analytic capabilities

 Limited use of MarkLogic’s data management capabilities

- Security, Tiered storage, Bitemporal

 Many joins to retrieve back a single resource/record (e.g. Patient)

 Complex ETL from entities to triples

SLIDE: 42 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

New Approach
Documents plus triples:

 Store incoming messages as documents

 Map data elements into top-level domain entities (Patient, Practitioner, Encounter, etc.) and store
these as documents

 Store the triples that go with each entity in the entity document (share management)

 Store enriched / derived triples in the entity documents that they came from

 Capture provenance in XML data structures

 Leverage bitemporal to track changes to entities over time

SLIDE: 43 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Architecture
HEALTHCARE 360

MAINFRAME

SQL DB

MAINFRAME “AS
IS” DATA

PROVENANCE

HARMONIZATION
LOGIC

SQL
“AS IS” DATA

ENRICHMENT

ENRICHED ENTERPRISE
MAINFRAME DATA

ENRICHED ENTERPRISE
SQL DATA

UNIFIED
QUERY VIEW API

ENTERPRISE
MODELS RELATIONSHIPS

REAL-TIME
MESSAGES

MESSAGE
HANDLER

BATCH
STREAMS

BATCH
“AS IS” DATA

ENRICHED ENTERPRISE
BATCH DATA

USER
APPLICATIONS

SLIDE: 44 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Unified Query View example for Patient ID
Subject Predicate Object Comment
EntPatientID owl:sameAs …/recordTarget/patientClinical/id HL7 v3 patient ID
EntPatientID owl:sameAs PID-3 HL7 v2 patient ID
EntPatientID owl:sameAs .../entry/resource/Patient/id FHIR patient ID

• EntPatientID is the enterprise patient ID that the API exposes in queries

• The patient ID is labeled and located differently in HL7 v3, HL7 v2 and FHIR

• Ontology triples can be used to expand the search to all the known ID
locations in the combined sources

SLIDE: 45 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Provenance
 Each entity has metadata / provenance / bitemporal information

<envelope>
<metadata>

<lastUpdatedDateTime>2015-05-25T12:00:03Z</lastUpdatedDateTime>
<firstCreatedDateTime>2015-05-25T12:00:03Z</firstCreatedDateTime>
<source>/fhir/message-9876.xml</source>
<lastUpdatedDateTime>2015-05-25T12:00:03Z</lastUpdatedDateTime>
<firstCreatedDateTime>2015-05-25T12:00:03Z</firstCreatedDateTime>

</metadata>
<original>

...
</original>

</envelope>

 Note: Prior versions of entities are kept via temporal collection

SLIDE: 46 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query
 Combination: MarkLogic CTS queries to scope SPARQL and Inference

- Reduce the set of entities we are interested in by using CTS

- Use SPARQL to query across entities and concepts

- Retrieve records as single entity documents without the need for joins

 SPARQL for semantic search

- Query triples (an ontology) to expand a concept search to include related concepts

 SPARQL for integration

- Query triples (an ontology) to expand a search over a canonical patientID
to a search over all representations of patientID

SLIDE: 47 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query
 Combiantion: MarkLogic CTS queries to scope SPARQL and Inference

- Reduce the set of entities we are interested in by using CTS

- Use SPARQL to query across entities and concepts

- Retrieve records as single entity documents without the need for joins

 SPARQL for semantic search

- Query triples (an ontology) to expand a concept search to include related concepts

 SPARQL for integration

- Query triples (an ontology) to expand a search over a canonical patientID
to a search over all representations of patientID

Query expansion:
 Expand the value you’re querying for
 Expand the places you look for that value

SLIDE: 48 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Example Combination Query
 Find patients who have encounters of type “outpatient” and date after 1/1/2010 with a physician

with last name of “ROBERT”

- CTS query to select encounters with type “outpatient” and date after 1/1/2010 and
physicians with last name of “ROBERT”

- SPARQL against the triples from the selected entities to join physicians and encounters
and return patient IRIs (as contained in the encounters)

- Use the patient IRIs to retrieve complete or partial patient entities (one by one or in
batches)

Done in
one call
to the DB

Efficient
Read

SLIDE: 49 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query: find patient info for some condition code
Dataset: 300 MN triples => (30K documents + 22 MN triples)

Query: find patient info for some condition code

Timings:

 Initial, triples-only: 45 secs

 Triples-only with re-written queries and some materialization: 30 secs

 Triples + documents, SPARQL with CTS constraints: 0.7 secs

 overall improvement: 65x perf + bitemporal

SLIDE: 50 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query: Aggregate patients by condition code, gender
Dataset: 300 MN triples => (30K documents + 22 MN triples)

Query: Aggregate patients by condition code, gender

Timings:

 Initial, triples-only: 1200 secs (8)

 Triples-only with re-written queries and some materialization: 50 secs

 Triples + documents, SPARQL with CTS constraints: 0.9 secs

 overall improvement: 55x perf + bitemporal

Case Study:
Leading Global Bank

SLIDE: 52 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Case Study: Leading Global Bank
Inventory system for tracking technical assets

 2 Billion triples

 Queries are heavily graph-traversal

 Documents for triples enrichment, provenance

 Bitemporal audit trail

SLIDE: 53 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Performance Summary
 Documents: entities

 Triples: relationships, facts, graphs

 You don’t have to choose just one!

 They go together like ….

Understanding SPARQL Execution

SLIDE: 55 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

prefix : <http://example.org/kennedy/>

select * {

?person :first-name ?first .

?person :last-name ?last .

?person :birth-place [:name ?birthPlace] .

filter(?birthPlace = 'Wien')

}

order by ?first ?last

Well-Behaved Query

SLIDE: 56 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Executing a Query
1. Parse

2. Initial query plan

3. Cost-based optimization

4. Execution plan

5. Run the plan

SLIDE: 57 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query Plan
 Trace flag "SPARQL AST"

[ML7,8,9]

 Trace flag "Optic Plan" [ML9]

 Trace option ("trace=XXXX") to
sem:sparql() and xdmp:sql()
[ML9]

 User friendly query plan
functions: sem:sparql-plan(), and
xdmp:sql-plan() [ML9.0-2]

SLIDE: 58 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Query Plan
 Trace flag "SPARQL AST"

[ML7,8,9]

 Trace flag "Optic Plan" [ML9]

 Trace option ("trace=XXXX") to
sem:sparql() and xdmp:sql()
[ML9]

 User friendly query plan
functions: sem:sparql-plan(), and
xdmp:sql-plan() [ML9]

SLIDE: 59 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<plan:plan xmlns:plan="http://marklogic.com/plan">
<plan:select>

<plan:project order="1,2,singletons(3)">
<plan:variable name="person" column-index="0" static-type="NONE"/>
<plan:variable name="first" column-index="1" static-type="NONE"/>
<plan:variable name="last" column-index="2" static-type="NONE"/>
<plan:variable name="birthPlace" column-index="3" static-type="NONE"/>
<plan:order-by order="1,2,singletons(3)" num-sorted="1">
<plan:order-spec descending="false" column="first" column-index="1"/>
<plan:order-spec descending="false" column="last" column-index="2"/>
<plan:scatter-join order="1,0,singletons(3)">

<plan:hash left="0" right="0" operator="="/>
<plan:scatter left="0" right="0" operator="="/>
<plan:scatter-join order="4,0,singletons(3)">

<plan:hash left="4" right="4" operator="="/>
<plan:scatter left="4" right="4" operator="="/>
<plan:triple-index order="4,singletons(3)" permutation="POS" dedup="true">
<plan:subject><plan:blank name="ANON18255453478089993081" column-index="4" static-type="NONE"/></plan:subject>
<plan:predicate><plan:iri name="http://example.org/kennedy/name" static-type="NONE"/></plan:predicate>
<plan:object><plan:variable name="birthPlace" column-index="3" static-type="NONE"/></plan:object>
<plan:join-filter op="=">

<plan:variable name="birthPlace" column-index="3" static-type="NONE"/>
<plan:literal>"Wien"</plan:literal>

</plan:join-filter>
</plan:triple-index>
<plan:triple-index order="4,0" permutation="OPS" dedup="true">
…

Query Plan

SLIDE: 60 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED. © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SLIDE: 61 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SLIDE: 62 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED. © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SLIDE: 63 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

select * {

?person :first-name ?first .

?person :last-name ?last .

?person :birth-place ?p .

?p :name ?birthPlace .

filter(?birthPlace = 'Wien')

}

order by ?first ?last

Constraining Condition

SLIDE: 64 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Statistics
• Trace flag "SPARQL Value

Frequencies" [ML7,8,9]

• Trace flag "Optic Statistics"
[ML9]

• Trace option ("trace=XXXX") to
sem:sparql() and xdmp:sql()
[ML9]

• cts:triple-value-statistics()
[ML8,9]

SLIDE: 65 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<triple-value-statistics count="1618" unique-subjects="144" unique-predicates="19" unique-objects="510" xmlns="cts:triple-value-statistics">
<triple-value-entries>

<triple-value-entry count="75">
<triple-value>http://example.org/kennedy/last-name</triple-value>
<subject-statistics count="0" unique-predicates="0" unique-objects="0"/>
<predicate-statistics count="75" unique-subjects="75" unique-objects="36"/>
<object-statistics count="0" unique-subjects="0" unique-predicates="0"/>

</triple-value-entry>
<triple-value-entry count="76">

<triple-value>http://example.org/kennedy/birth-place</triple-value>
<subject-statistics count="0" unique-predicates="0" unique-objects="0"/>
<predicate-statistics count="76" unique-subjects="76" unique-objects="28"/>
<object-statistics count="0" unique-subjects="0" unique-predicates="0"/>

</triple-value-entry>
<triple-value-entry count="51">

<triple-value>http://example.org/kennedy/name</triple-value>
<subject-statistics count="0" unique-predicates="0" unique-objects="0"/>
<predicate-statistics count="51" unique-subjects="51" unique-objects="51"/>
<object-statistics count="0" unique-subjects="0" unique-predicates="0"/>

</triple-value-entry>
<triple-value-entry count="1">

<triple-value datatype="http://www.w3.org/2001/XMLSchema#string">Wien</triple-value>
<subject-statistics count="0" unique-predicates="0" unique-objects="0"/>
<predicate-statistics count="0" unique-subjects="0" unique-objects="0"/>
<object-statistics count="1" unique-subjects="1" unique-predicates="1"/>

</triple-value-entry>
…

Statistics

SLIDE: 66 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

• Trace flag "SPARQL Execution"
[ML7,8,9]

• Trace flag "Optic Execution"
[ML9]

• Trace option ("trace=XXXX") to
sem:sparql() and xdmp:sql()
[ML9]

Query Execution

SLIDE: 67 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<plan:call locking="read-write" xmlns:plan="http://marklogic.com/plan">
<plan:triple permutation="POS">

<plan:subject column-index="4"/>
<plan:predicate operator="=">

<plan:value>http://example.org/kennedy/name</plan:value>
</plan:predicate>
<plan:object column-index="3" operator="=">

<plan:value datatype="http://www.w3.org/2001/XMLSchema#string">Wien</plan:value>
</plan:object>

</plan:triple>
<plan:ordered-nodup-result>

<plan:order-spec column-index="3" descending="false"/>
<plan:order-spec column-index="4" descending="false"/>

</plan:ordered-nodup-result>
</plan:call>

Query Execution

SLIDE: 68 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<plan:call locking="read-write" xmlns:plan="http://marklogic.com/plan">
<plan:column-constraint>

<plan:constraint column-index="4" operator="=">
<plan:value>http://example.org/kennedy/place51</plan:value>

</plan:constraint>
<plan:triple permutation="OPS">

<plan:subject column-index="0"/>
<plan:predicate operator="=">

<plan:value>http://example.org/kennedy/birth-place</plan:value>
</plan:predicate>
<plan:object column-index="4"/>

</plan:triple>
</plan:column-constraint>
<plan:ordered-nodup-result>

<plan:order-spec column-index="4" descending="false"/>
<plan:order-spec column-index="0" descending="false"/>

</plan:ordered-nodup-result>
</plan:call>

Query Execution

SLIDE: 69 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<plan:call locking="read-write" xmlns:plan="http://marklogic.com/plan">
<plan:column-constraint>

<plan:constraint column-index="0" operator="=">
<plan:value>http://example.org/kennedy/person27</plan:value>

</plan:constraint>
<plan:triple permutation="PSO">

<plan:subject column-index="0"/>
<plan:predicate operator="=">

<plan:value>http://example.org/kennedy/last-name</plan:value>
</plan:predicate>
<plan:object column-index="2"/>

</plan:triple>
</plan:column-constraint>
<plan:ordered-nodup-result>

<plan:order-spec column-index="0" descending="false"/>
<plan:order-spec column-index="2" descending="false"/>

</plan:ordered-nodup-result>
</plan:call>

Query Execution

SLIDE: 70 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

<plan:call locking="read-write" xmlns:plan="http://marklogic.com/plan">
<plan:column-constraint>

<plan:constraint column-index="0" operator="=">
<plan:value>http://example.org/kennedy/person27</plan:value>

</plan:constraint>
<plan:triple permutation="POS">

<plan:subject column-index="0"/>
<plan:predicate operator="=">

<plan:value>http://example.org/kennedy/first-name</plan:value>
</plan:predicate>
<plan:object column-index="1"/>

</plan:triple>
</plan:column-constraint>
<plan:ordered-nodup-result>

<plan:order-spec column-index="1" descending="false"/>
<plan:order-spec column-index="0" descending="false"/>

</plan:ordered-nodup-result>
</plan:call>

Query Execution

SLIDE: 71 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

select * {

?person :first-name ?first .

?person :last-name ?last .

?person :has-parent ?parent .

?parent :birth-year ?parentBirth .

filter(?parentBirth < '1890')

}

Problem Query

SLIDE: 72 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED. © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SLIDE: 73 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

select * {

?person :first-name ?first .

?person :last-name ?last .

?person :has-parent ?parent .

{ select * {

?parent :birth-year ?parentBirth .

filter(?parentBirth < '1890')

} limit 1 }

}

Improvement: Add Cardinality Hints

SLIDE: 74 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED. © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SLIDE: 75 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

select * {

?person :first-name ?first .

?person :last-name ?last .

?person :birth-place [:name 'Boston'] .

?person :has-parent ?parent .

?parent :birth-year ?parentBirth .

filter(?parentBirth < '1890')

}

Improvement: Add Constraining Condition

SLIDE: 76 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED. © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Understanding the Triple Caches

SLIDE: 78 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triple Patterns use the Triple Index
 Designed to look up triple patterns
 Facilitates fast joins
 4 triple permutations
 Not memory mapped - cached for performance
 Works seamlessly with other indexes

TRIPLE

SLIDE: 79 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triple Index
subject predicate object doc ID position
:person4 :first-name “John” 11 5 - 9
:person5 :alma-mater :Brown 4 25 - 40
:person5 :birth-year 1929 9 13 - 17
…

SLIDE: 80 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triple Data and Triple Values
subject predicate object doc ID position
4 3 6 11 5 - 9
5 0 2 4 25 - 40
5 1 7 9 13 - 17
…

ordinal tag value
…
3 IRI :first-name
4 IRI :person4
5 IRI :person5
6 STRING “John”
7 DECIMAL 1929
…

SLIDE: 81 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triple and Triple Value Cache
 D-node caches

 Partitioned for lock contention

 Configurable maximum size

 Grows and shrinks

- No up-front memory allocation

- Trickle removed after 30s inactivity (user configurable)

 Flexibility

- Size according to importance of triple based queries

- Size for working set

- Size big “in case”, but rely on it normally being small

SLIDE: 82 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Triple and Triple Value Cache
 xdmp:query-meters()

- cache hits/misses for a query

 xdmp:forest-status()

- cache hits/misses/hit rate/miss rate for each stand

 xdmp:cache-status()

- Percentage busy/used/free by cache partition

 Admin UI database status and forest status

 Metering

Understanding Optimization

SLIDE: 84 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SPARQL Optimization
 Cost estimation:

- Column cardinality estimates

- Sort order static analysis

 Query plan mutations:

- Multiple orders available in the triple index

- Multiple join implementations

- Join re-ordering

 Simulated annealing:

- Guided randomized search for a good query plan

SLIDE: 85 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Optimization Levels
 Default optimization level is 1

 Larger queries may need a longer optimization process

 Optimization levels of 2, 3, 4 etc. are possible

 Optimization level of 0 only uses simple heuristic based
optimization

 Trade off between planning and doing

credit: http://commons.wikimedia.org/wiki/User:Morio

sem:sparql("…",(),"optimize=2",
cts:directory-query("/triples/")
)

Improvements in MarkLogic 9

SLIDE: 87 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

SQL parsing

E-NODE OPTIC
ENGINE

SPARQL
Triple

selection

Filter
constraints

Aggregates
and Grouping

Query
planning

Joins

PLAN

ROWS

cts:queryCompressed
row / column
optimizations

D-NODE OPTIC
ENGINE

Lexicon
Accessor

Sorting

Aggregates
and Grouping

Stand based
query planning

SPARQL
parsing

Column
selection

Plan builtins

Triple
Accessor

Joins

Row Accessor

OPTIC ENGINE ARCHITECTURE

OPTIC
API

SLIDE: 88 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

What the New Optimizations Do For You!
 Faster ORDER BY from the index with a known predicate

- POS permutation in the triple index
 Faster descending ORDER BY

- descending order triple index access
 Faster multi-column ORDER BY

- partial sort uses major sort order from the triple index
 Faster range-based triple index access

- both upper and lower bound
 Faster grouping

- hash based grouping
 Faster disk reads

- especially on Windows

SLIDE: 89 © COPYRIGHT 2017 MARKLOGIC CORPORATION. ALL RIGHTS RESERVED.

Getting the Most from MarkLogic Semantics
 Introduction

 Performance at scale

- Tips – general, detailed

- Case Studies – Educational publisher, Data store for clinical data, Global bank

 Under the hood

- Understanding SPARQL execution

- Understanding the Triple Caches

- Understanding optimization

- Improvements in MarkLogic 9

Questions?

	Getting the Most �from MarkLogic Semantics
	Introduction
	Semantics Is: A New Way to Organize Data
	Triples Alongside Documents
	Documents as Part of the Graph
	Triples About Documents – Extended Metadata
	Triples About Documents - Integration
	Slide Number 8
	Slide Number 9
	Semantics Performance at Scale
	Semantics Performance at Scale
	Tip: Use MarkLogic!�
	Tip: Scope the query�
	Tip: Documents for Entities; Triples for Facts, Relationships�
	Tip: Documents for Entities; Triples for Facts, Relationships�
	Tip: Documents for Entities; Triples for Facts, Relationships�
	Tip: Inference
	SPARQL Based Inference
	Tip: Inference
	Tips: detailed [1]
	Tips: detailed [2]
	Tips: detailed [3]
	Case Studies
	Case Study: �Educational Publisher
	Case Study: Educational Publisher
	Query: find triples where object matches mat?s
	Slide Number 27
	Query: find triples where object matches mat?s
	Query: find triples where object matches mat?s
	Query: GET Description
	Performance Exercise
	Case Study: �Data Store for Clinical Data
	Case Study: Data Store for Clinical Data
	Initial Approach
	Initial Approach
	<Sidetrack: Metadata about triples>
	Metadata about a triple[1]: Reification
	Metadata about a triple[2]: Instantiated Predicates
	Metadata about a triple[3]: Embed triple in a document
	</Sidetrack: Metadata about triples>
	Initial Approach
	New Approach
	Architecture
	Unified Query View example for Patient ID
	Provenance
	Query
	Query
	Example Combination Query
	Query: find patient info for some condition code
	Query: Aggregate patients by condition code, gender
	Case Study: �Leading Global Bank
	Case Study: Leading Global Bank
	Performance Summary
	Understanding SPARQL Execution
	Well-Behaved Query
	Executing a Query
	Query Plan
	Query Plan
	Query Plan
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Constraining Condition
	Statistics
	Statistics
	Query Execution
	Query Execution
	Query Execution
	Query Execution
	Query Execution
	Problem Query
	Slide Number 72
	Improvement: Add Cardinality Hints
	Slide Number 74
	Improvement: Add Constraining Condition
	Slide Number 76
	Understanding the Triple Caches
	Triple Patterns use the Triple Index
	Triple Index
	Triple Data and Triple Values
	Triple and Triple Value Cache
	Triple and Triple Value Cache
	Understanding Optimization
	SPARQL Optimization
	Optimization Levels
	Improvements in MarkLogic 9
	Optic Engine Architecture
	What the New Optimizations Do For You!
	Getting the Most from MarkLogic Semantics
	Slide Number 90

